Achlioptas Process Phase Transitions Are Continuous

نویسنده

  • Lutz Warnke
چکیده

It is widely believed that certain simple modifications of the random graph process lead to discontinuous phase transitions. In particular, starting with the empty graph on n vertices, suppose that at each step two pairs of vertices are chosen uniformly at random, but only one pair is joined, namely one minimizing the product of the sizes of the components to be joined. Making explicit an earlier belief of Achlioptas and others, in 2009, Achlioptas, D’Souza and Spencer conjectured that there exists a δ > 0 (in fact, δ ≥ 1/2) such that with high probability the order of the largest component ‘jumps’ from o(n) to at least δn in o(n) steps of the process, a phenomenon known as ‘explosive percolation’. We give a simple proof that this is not the case. Our result applies to all ‘Achlioptas processes’, and more generally to any process where a fixed number of independent random vertices are chosen at each step, and (at least) one edge between these vertices is added to the current graph, according to any (online) rule. We also prove the existence and continuity of the limit of the rescaled size of the giant component in a class of such processes, settling a number of conjectures. Intriguing questions remain, however, especially for the product rule described above. Joint work with Oliver Riordan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explosive Percolation in Erdős-Rényi-Like Random Graph Processes

The evolution of the largest component has been studied intensely in a variety of random graph processes, starting in 1960 with the Erdős-Rényi process (ER). It is well known that this process undergoes a phase transition at n/2 edges when, asymptotically almost surely, a linear-sized component appears. Moreover, this phase transition is continuous, i.e., in the limit the function f(c) denoting...

متن کامل

Explosive percolation: a numerical analysis.

Percolation is one of the most studied processes in statistical physics. A recent paper by Achlioptas [Science 323, 1453 (2009)] showed that the percolation transition, which is usually continuous, becomes discontinuous ("explosive") if links are added to the system according to special cooperative rules (Achlioptas processes). In this paper, we present a detailed numerical analysis of Achliopt...

متن کامل

Explosive percolation is continuous, but with unusual finite size behavior.

We study four Achlioptas-type processes with "explosive" percolation transitions. All transitions are clearly continuous, but their finite size scaling functions are not entirely holomorphic. The distributions of the order parameter, i.e., the relative size s(max)/N of the largest cluster, are double humped. But-in contrast to first-order phase transitions-the distance between the two peaks dec...

متن کامل

Finite-size scaling theory for explosive percolation transitions.

The finite-size scaling (FSS) theory for continuous phase transitions has been useful in determining the critical behavior from the size-dependent behaviors of thermodynamic quantities. When the phase transition is discontinuous, however, FSS approach has not been well established yet. Here, we develop a FSS theory for the explosive percolation transition arising in the Erdős and Rényi model un...

متن کامل

Percolation transitions in scale-free networks under the Achlioptas process.

It has been recently shown that the percolation transition is discontinuous in Erdos-Rényi networks and square lattices in two dimensions under the Achlioptas process (AP). Here, we show that when the structure is highly heterogeneous as in scale-free networks, a discontinuous transition does not always occur: a continuous transition is also possible depending on the degree distribution of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011